Hybrid Prikry Forcing

نویسنده

  • DIMA SINAPOVA
چکیده

We present a new forcing notion combining diagonal supercompact Prikry focing with interleaved extender based forcing. We start with a supercompact cardinal κ. In the final model the cofinality of κ is ω, the singular cardinal hypothesis fails at κ and GCH holds below κ. Moreover we define a scale at κ, which has a stationary set of bad points in the ground model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathias-Prikry and Laver-Prikry type forcing

We study the Mathias-Prikry and Laver-Prikry forcings associated with filters on ω. We give a combinatorial characterization of Martin’s number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias-Prikry forcing does not add any dominating reals.

متن کامل

A remark on subforcings of the Prikry forcing

We will show that every subforcing of the basic Prikry forcing is either trivial or isomorphic to the Prikry forcing with the same ultrafilter. Let κ be a measurable cardinal and U a normal ultrafilter over κ. We will denote by P (U) the basic Prikry forcing with U . Let us recall the definition. Definition 0.1 P (U) is the set of all pairs 〈p,A〉 such that 1. p is a finite subset of κ, 2. A ∈ U...

متن کامل

Mathias-Prikry and Laver type forcing; summable ideals, coideals, and +-selective filters

We study the Mathias–Prikry and the Laver type forcings associated with filters and coideals. We isolate a crucial combinatorial property of Mathias reals, and prove that Mathias–Prikry forcings with summable ideals are all mutually bi-embeddable. We show that Mathias forcing associated with the complement of an analytic ideal does add a dominating real. We also characterize filters for which t...

متن کامل

A minimal Prikry-type forcing for singularizing a measurable cardinal

Recently, Gitik, Kanovei and the first author proved that for a classical Prikry forcing extension the family of the intermediate models can be parametrized by Pp!q{finite. By modifying the standard Prikry tree forcing we define a Prikry-type forcing which also singularizes a measurable cardinal but which is minimal, i.e. there are no intermediate models properly between the ground model and th...

متن کامل

Prikry on Extenders, Revisited

We present a modification to the Prikry on Extenders forcing notion allowing the blow up of the power set of a large cardinal, change its cofinality to ω without adding bounded subsets, working directly from arbitrary extender (e.g., n-huge extender). Using this forcing, starting from a superstrong cardinal κ, we construct a model in which the added Prikry sequences are a scale in the normal Pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014